Monthly Archives: April 2016

How does a cell stay alive? How do molecules in a cell “know” how to react with one another? Does this chemistry become more complex over time, and if so, why? In Dr. Betül Kacar’s lab at Harvard University, scientists look for answers. In order to understand how a complex communication system evolves and potentially shapes the evolutionary trajectory of a cell, the authors propose the use of a new technique to understand the evolution of an interaction network. This is an experimental system in which laboratory evolution experiments and synthetic biology are combined with ancestral sequence resurrection (ASR) techniques. ASR allows inferring the ancient DNA sequence of a modern gene or protein by using phylogenetic trees and computational algorithms. Synthetic biology is the construction of these inferred DNA molecules in the laboratory, specifically for the case of the authors, achieved through engineering the DNA molecules inside a modern bacteria. The authors aim to reconstruct an…

Read more

How does a cell stay alive? How do molecules in a cell “know” how to react with one another? Does this chemistry become more complex over time, and if so, why? In Dr. Betül Kacar’s lab at Harvard University, scientists look for answers. In order to understand how a complex communication system evolves and potentially shapes the evolutionary trajectory of a cell, the authors propose the use of a new technique to understand the evolution of an interaction network. This is an experimental system in which laboratory evolution experiments and synthetic biology are combined with ancestral sequence resurrection (ASR) techniques. ASR allows inferring the ancient DNA sequence of a modern gene or protein by using phylogenetic trees and computational algorithms. Synthetic biology is the construction of these inferred DNA molecules in the laboratory, specifically for the case of the authors, achieved through engineering the DNA molecules inside a modern bacteria. The authors aim to reconstruct an…

Read more

How does a cell sustain its viability? How do molecules within a cell communicate each other. Does  the interaction within a cell become more complex over time, and if so, why?  In this article led by Betul Kacar, the authors seek answers to these questions. In order to understand how a complex communication system evolves and potentially shapes the evolutionary trajectory of a cell, the authors propose the use of a new methodology to understand the evolution of an interaction network. This is an experimental system in which laboratory evolution experiments and synthetic biology are combined with ancestral sequence resurrection (ASR) techniques. ASR allows inferring the ancient DNA sequence of a modern gene or protein by using phylogenetic trees and computational algorithms. Synthetic biology is the construction of these inferred DNA molecules in the laboratory, specifically for the case of the authors, achieved through engineering the DNA molecules inside a modern bacteria. The authors aim to reconstruct…

Read more

3/3